Caracteres morfoanatómicos de diferentes cortezas de la medicina folklórica argentina. I. *Salix humboldtiana* Willd. (Salicaceae)

OSVALDO A. DI SAPIO y MARTHA A. GATTUSO


Resumen: La presente contribución investiga los caracteres morfoanatómicos que revisten valor diagnóstico de la “corteza” de *Salix humboldtiana* Willd. (“sauce criollo”, “sauce colorado”) (Salicaceae) de común expendio en herboristerías y ampliamente difundida en el contexto de nuestra medicina vernácula por sus propiedades tónicas, sedantes, antispasmódicas y sobre todo, febrifugas. Se analizan asimismo, aspectos histoquímicos que en suma contribuyen a la identificación de la droga cruda.

Morphoanatomic characters of different barks in Argentine folk medicine. I. *Salix humboldtiana* Willd. (Salicaceae)

Summary: The aim of this work is to investigate the morphoanatomic characters in *Salix humboldtiana* Willd. bark (“sauce criollo”, “sauce colorado”) (Salicaceae), which bear diagnostic value. It is sold in herb shops and is widely used within the scope of our folk medicine because of its tonic, sedative, antispasmodic and above all its antipyretic properties. Its histochemical aspects are likewise analysed, which help to identify the crude drug.

PALABRAS CLAVES: anatomía, corteza, histoquímica, morfología, ritidoma, *Salix humboldtiana*.

KEYS WORDS: anatomy, bark, histochemistry, morphology, rhytidome, *Salix humboldtiana*. 
Introducción

El género *Salix* comprende unas 300 especies e híbridos naturales nativos. La mayoría procede de las regiones frías y templadas de Europa, Asia y América; son poco comunes en las regiones tropicales y en el hemisferio austral. En nuestro país, dicho género se halla representado por una única especie indígena, *Salix humboldtiana* Willd., llamado comúnmente “sauce criollo”, “sauce colorado”, que crece espontáneamente en las orillas de ríos y arroyos, abarcando un área muy amplia de distribución que se extiende desde Salta, Jujuy y Misiones hasta Chubut (1).

Existen híbridos naturales originados por cruzamiento entre ejemplares masculinos de *Salix humboldtiana* Willd. y ejemplares femeninos cultivados de *Salix babylonica* L. (“sauce lloron”), nativo de Asia. Su origen híbrido ha sido demostrado por Ragonese y Rial Alberti (2,3) y Hunziker (4,5).

En la fitoterapia popular la “cortez” de *Salix humboldtiana* Willd. es utilizada en infusiones o cocimientos por sus propiedades tónicas, sedantes y sobre todo, febrífugas (6).

Estas acciones terapéuticas guardan aparente relación con el contenido de ciertos fenolglucósidos, entre ellos el salicósido (salicína) que por acción de la glicosidasa de la emulsina se descompone en alcohol salicílico (saligenina) y D-glucosa. Por oxidación, el alcohol salicílico se convierte primero en aldehído salicílico y luego en ácido salicílico (7). Hegnauer (8) indica que el salicósido no aparece genuino en muchas *Salicaceae*, sino que surge como resultado de la extracción de complejos lábiles, en los que el conjunto de los derivados fenólicos presentes en la cortez es un factor de resistencia contra enfermedades de etiología bacteriana y fúngica.

El contenido de los glucósidos de la cortez y de las hojas es muy diferente para las distintas especies de la familia; depende de la edad del órgano y de la época del año en que se efectúa la recolección.

Estudios fitoquímicos realizados sobre tallos foliáceos y flores, masculinas y femeninas, demostraron la presencia de saponinas y oxidasas (9). También se determinaron para el género *Salix* otros compuestos como ácido benzoico, ácido p-cumárico, un complejo espectro de flavonoides, luteocantocianinas, catequina, proteínas (abundante en hojas), taninos y celulosa. Respecto a su composición mineral, se destaca un bajo contenido de sílice y fósforo y niveles elevados de los cationes divalentes zinc y calcio (10).
Los caracteres anatómicos de la familia Salicaceae brindan datos generales sobre los géneros Salix y Populus (11). Tortorelli (12) analiza la madera de Salix humboldtiana Willd. y en la revisión bibliográfica no se obtuvo información referida a la actividad del felógeno.

Con el propósito de facilitar el reconocimiento de la corteza de Salix humboldtiana Willd., efectuamos un análisis de sus caracteres morfológicos, anatómicos y fitoquímicos que la caracterizan.

Materiales y Métodos

Para el estudio botánico se trabajó con material fresco coleccionado en el departamento Rosario, provincia de Santa Fe y material de herbario.

Los materiales examinados se hallan depositados en el Herbario de la Universidad Nacional de Rosario (UNR) y en el Area Biología Vegetal, especialidad Botánica de la Facultad de Ciencias Bioquímicas y Farmacéuticas de la U.N.R.

Se procesaron tacos de corteza previamente hervidos. Se realizaron cortes transversales con micrótomo de deslizamiento de 10 - 15 μm de espesor. Para la tinción se aplicó la técnica de coloración Safranina - Fast Green (13).

Se efectuaron macerados (14) de la corteza con el propósito de caracterizar los diferentes tipos celulares que la constituyen.

En la interpretación de los cristales de oxalato de calcio se empleó luz polarizada. Se realizaron las siguientes pruebas microquímicas (15): taninos con solución de sulfato férrico-formaldehído; lignina con floroglucina en medio clorhídrico; mucilagos con violeta de cresyl; aceites esenciales y grasas con Sudán IV; almidón con solución iodo-iodurada; saponinas con ácido sulfúrico concentrado; resinas y oxalatos con acetato cúprico; celulosa con cloroioduro de cinc; alcaloides con Dragendorff y Mayer. Se realizó la reacción de Millon para proteínas.

La presencia del salicósido se confirmó por medio de un microtest de ácido sulfúrico concentrado (específico salicina) (16).

Los preparados se montaron en gelatina glicerinada y bálsamo de Canadá. Los dibujos son originales y fueron realizados por los autores con tubo de dibujo. El transcorte de la corteza es esquemático y se representó utilizando los símbolos convencionales de Metcalfe y Chalk (11).

Las fotomicrografías se obtuvieron con un microscopio Nikon Diaphot con sistema Microflex HSX-2 del Centro de Estudios Fotosintéticos Bioquímicos (CEFOBI) de la Universidad Nacional de Rosario.
Las dimensiones consignadas para los distintos elementos se determinaron con el auxilio de un ocular micrométrico y los valores representan el promedio de diez mediciones como mínimo.

Material Examinado

_Salix humboldtiana_ Willd. ARGENTINA. Prov. de Santa Fe: Dpto. de San Gerónimo, islas, 3-V-1977 (masc.) Franceschi 1543 (UNR); idem (fem.) Franceschi 1546 (UNR); Pto. Gaboto, 12-X-1986 (masc.) Pire 7840 (UNR). Dpto. Rosario, costa, 28-VIII-1990 (masc.) Di Sapio 8885 (UNR); idem (masc.) Di Sapio 8886 (UNR); 3-IX-1990 (masc.) Di Sapio 8887 (UNR).

Resultados

Caracteres exomorfológicos

La superficie externa en la corteza joven es lisa, color pardo grisáceo (Fig. 1 A); la corteza vieja es color pardo amarillento a pardo oscuro y se halla recorrida por estrías longitudinales, que a su vez se unen con otras dispuestas diagonalmente (Fig. 1 B).

Las placas que se desprenden en especies muy añosas son grandes con bordes irregulares y moderadamente gruesas en espesor.

La superficie interna es estriada longitudinalmente (Fig. 1 C), color canela o rojizo pálido y posee fractura breve y fibrosa.

Su olor es levemente aromático y su sabor astringente y ligeramente amargo.

Caracteres anatómicos

a) Corteza externa

A nivel de la corteza externa se observa la presencia de numerosas peridermis, originadas por la actividad fealogénica y que constituyen el ritídoma. Esas peridermis se disponen en forma imbricada o escamosa y se hallan constituidas por 5 a 8 capas de células de súber, de paredes moderadamente engrosadas (Fig. 1 G y 2 A).
Las células suberosas presentan paredes radiales cortas y tangencialmente anchas en cada peridermis; las últimas en generarse se ubican en capas más comprimidas que las demás (Fig. 1 E).

Es de destacar que en algunos sectores el súber circunscribe paquetes de fibras esclerenquimáticas (Fig. 1 D).

b) Corteza interna

El tejido comprendido entre las peridermis y el que conforma la corteza interna corresponden a floema secundario, inactivo en el primer caso y activo en el segundo (Fig. 1 H).

Los radios floemáticos que se observan dispuestos longitudinalmente en ambas cortezas son uniseriados y han sufrido una ligera torsión debido al crecimiento secundario del tallo (Fig. 1 I).

Se observan gran cantidad de paquetes de fibras libriformes asociadas o no a esclereidas y rodeadas por parénquima cristalífero, el cual contiene cristales romboédricos solitarios de oxalato de calcio (Fig. 1 F).

Se observan también drusas de oxalato de calcio de variados tamaños tanto en la corteza externa como en la interna.

En el análisis del material macerado, se ponen de manifiesto los siguientes elementos celulares: células poligonales rectangulares que corresponden al súber, de paredes moderadamente engrosadas (Fig. 2 B) cuyas dimensiones oscilan entre 10 μm por 25 μm y 10 μm por 50 μm.

Los idioblastos cristalíferos envuelven los paquetes de fibras libriformes a modo de vaina (Fig. 2 C); incluyen oxalato de calcio bajo la forma de cristales poliédricos de 10 - 12 μm. El tamaño de las drusas oscila entre 15 - 40 μm (Fig. 2 C y D).

Se observa también parénquima de floema (Fig. 2 G) de 25 por 60 μm, parénquima de radio con células procumbentes (Fig. 2 F) de 10 por 50 μm y numerosas braquiesclereidas de 5 - 25 μm de diámetro (Fig. 2 E).

Las fibras esclerenquimáticas se presentan en dimensiones que oscilan entre 400 - 1500 μm de longitud (Fig. 2 H).

Efectuado el estudio histoquímico dieron resultado positivo las siguientes reacciones: lignina, suberina, celulosa, taninos, proteínas, oxalato de calcio y salicéídido (salicína).

Dieron resultado negativo las reacciones para almidón, resinas, mucilagos, saponinas y alcaloides, y dieron sólo indicios en los lípidos.
Conclusiones

Se ha estudiado la exomorfología, anatomía e histoquímica de la corteza de *Salix humboldtiana* Willd. Se determinó que la droga puede ser identificada mediante una combinación de caracteres estructurales y cuantitativos, entre los cuales merecen citarse:

1. Células del súber: poligonales rectangulares de paredes moderadamente engrosadas con dimensiones que oscilan entre 10 por 25 μm y 10 por 50 μm.

2. Idioblastos cristalíferos: envuelven paquetes de fibras y contienen cristales poliédricos.

3. Oxalato de calcio: bajo la forma de: a) cristales poliédricos de 10 - 12 μm. b) drusas de 15 - 40 μm.


5. Parénquima de floema con elementos celulares de 25 por 60 μm.

6. Parénquima de radio con células procumbentes de 10 por 50 μm.

7. Fibras esclerenquimáticas cuyas dimensiones oscilan entre 400 y 1500 μm de longitud.

Agradecimiento

Agradecemos a la Prof. Susana J. Gattuso la lectura crítica del manuscrito; al Ing. Agr. Martín Reggiardo y al Bioq. José Pellegrino, la realización del material fotográfico.

Bibliografía